Я уже писал в начале лета о самодельном ветряке – анемометре.

Его целью было организовать сбор статистики о ветре и принятие на ее основе решения о постройке большого серьезного ветряка. К сожалению, не нашлось ни программиста, желающего написать программу обработки данных с анемометра, ни специалиста по микроконтроллерам, для создания соответствующего прибора. Поэтому, увы пришлось наблюдать за ветром визуально, благо флюгер был всегда на виду. И к сожалению, наблюдения эти крайне удручающие…

Дело в том, что ветер в средней полосе европейской части России обладает крайней турбулентностью в своих приземных слоях. Буквально в течении 3-5 минут ветряк многократно и останавливается (или сильно замедляется) и раскручивается так, что лопастей не видно. При этом и направление ветра меняется в секторе до 90-120 градусов. Крайне редко бывают дни когда дует относительно сильный и ровный ветер. За все лето в моей местности таких дней было всего 4. Было несколько штилевых дней. А в остальные — ветер был очень турбулентный, и по скорости, и по направлению.

В таких условиях делать «глобальный» ветроэлектрогенератор (на 1-2 КВт или более) совершенно бессмысленно. Он не только себя никогда не окупит, но вообще будет плохо работать. Поскольку мощный генератор потребует больших лопастей, а они будут обладать большой инерцией и следовательно — «пропускать» порывы сильного ветра. Т.е. попросту не будут успевать раскручиваться. Порой такие порывы, несущие в себе основную мощность «среднего» ветрового потока длятся всего 15-30 секунд.

Кроме того, любой вращающийся предмет обладает значительным моментом инерции в плоскости вращения и представляет собой, по сути, гироскоп. Надеюсь, читатель помнит простой школьный опыт по демонстрации гироскопического эффекта с велосипедным колесом. Будучи раскрученным, оно легко удерживается буквально «двумя пальцами» за один из торчащих концов своей оси. И его чрезвычайно трудно повернуть в бок и заставить крутиться в другой плоскости. Примерно тоже самое будет происходить и с пропеллером ветряка при изменении направления ветра. И ось, и лопасти пропеллера будут испытывать чудовищные боковые знакопеременные нагрузки.

Эти обстоятельства фактически ставят жирный крест на надеждах обойтись одним большим ветряком. Работать он, конечно же будет. Но редко и бестолково. При слабых турбулентных ветрах он будет все равно выдавать мизерную мощность, а при сильных – вы не будете знать куда девать излишек. И уж конечно, следует забыть про его окупаемости. Он будет просто дорогой и красивой игрушкой, самым бестолковым вложением средств и труда, которое только можно представить.

Перспективными же конструкции ветряков – это небольшие маломощные ветрогенераторы, имеющие практически нулевую инерционность. Именно они способны взять от ветра практически всю энергию, которую он несет. Таких, что бы успевали быстро раскручиваться и отрабатывать смену галса. А для получения большой мощности потребуется устройство своеобразного ветропарка ветряных генераторов, расположенных на разновысоких мачтах (что бы не экранировать друг друга от ветра). Это же, кстати, значительно повысит буреустойчивость, решение проблем с мощными тяжелыми мачтами и растяжками (мачты будут держать друг друга), с надежностью «электростанции» — ведь все сразу генераторы сломаться не могут и плановый ремонт и обслуживание не приведут к полной остановке генерирующих мощностей.

Придя к таким неутешительным выводам, я решил переделать свой анемометр в рабочую модель ветрогенератора. Т.е. вместо бестолкового созерцания флюгера начать получать от него практическую пользу. Тем более, что генератор ветряка представляет собой шаговый двигатель с 200 «шагами» на оборот и довольно шустро генерит электричество даже на малых оборотах. Мощность генератора примерно Ватт 7-8

Прежде всего потребовалась замена лопастей на менее инерционные. Лопухи от вентилятора все же довольно тяжелы. Новые лопасти ветряка я сделал их из остатков дюралюминиевого отлива для пластиковых окон. Диаметр пропеллера — примерно сантиметров 50. Что сулит выход на максимальную мощность для генератора уже при ветре 4 м/с. Вырезал из толстой фанеры треугольник. Вклеил в него (эпоксидной смолой) втулку, внутренний диаметр которой совпадал в диаметром оси шагового моторчика. Тщательно разметив, сделал пропилы в фанерном «кокпите» и вклеил в прорези лопасти. Дополнительно зафиксировал их небольшими винтами. Пока эпоксидка не застыла, постарался максимально отбалансировать винт, что он не вибрировал при вращении. После застывания эпоксидной смолы еще раз проверил балансировку и довел ее до совершенства путем срезания тончайших полосок дюраля с краев лопастей.

Вообще говоря, маломерные ветрогенераторы обладают приятным свойством. Практически нет смысла заморачиваться сложнейшими расчетами КИЭВ, профилей лопасти и их изготовлением. Будут прекрасно работать и простейшие, плоские. А нужную мощность можно получить простым их удлинением (следовательно, увеличением площади ометания).

Все это чрезвычайно удешевляет ветрогенератор, появляется смысл его изготовления и использования. В частности, на свой я потратил примерно 3-4 часа времени (включая флюгер) и без учета времени полимеризации эпоксидной смолы. Затраты составили «ноль», так как делалось все «из мусора», т.е. подручных материалов.

Казалось бы, где можно использовать такой маломощный генератор? В перспективе, я собираюсь использовать его на… нагреве воды. Вернее, для компенсации теплопотерь воды, нагретой солнцем. Простейший расчет показывает абсолютную состоятельность моих надежд.

Допустим, есть некий бак – термос, литров на 50, куда вечером сливается нагретая до 50 градусов вода из солнечного коллектора. Размер бака примерно 40 х 40 х 40 см. Соответственно площадь поверхности будет равна 1 кв. метру. Бак окружен теплоизоляцией с Ктеплопроводности 0,15 Вт/м*град и толщиной 30 см. и теплопотери будут составлять примерно 0,5 Вт/град. Т.е. для того, что бы поддерживать разность температур в 20-25 градусов между горячей водой в баке-термосе и окружающим воздухом, достаточно генератора мощностью всего 10-15 Вт! Он будет компенсировать теплопотери и однажды нагретая вода уже никогда не остынет. А случись крепкий ветерок — так еще и подогреется.

Сейчас мой генератор крутится пока без нагрузки, проходит «ходовые испытания». Но в ближайшее время я его заставлю заряжать аккумуляторы в освещении дачного туалета и подсветки дорожки к нему. А то тащить сетевой провод туда и лень и затруднительно, а менять батарейки в китайском фонаре уже надоело.